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B E H A V I O R  OF T H E  U N S T E A D Y  J E T  OF A M I X T U R E  

OF A P R E S S U R I Z E D  GAS AND D I S P E R S E D  PARTICLES D I S C H A R G E D  

F R O M  A C I R C U L A R  D U C T  I N T O  T H E  A T M O S P H E R E  

D. V.  Sadin UDC 532.529.5 

The unsteady azisymmetric jet produced by discharge of a mixture of a pressurized gas and 
dispersed particles from a circular duct into the atmosphere is studied within the framework of 
two-velocity, two-temperature gas dynamics. An attempt is undertaken to allow for the effective 
pressure due to random particle motion. The collision mechanism is found to be essential to 
radial expansion of the flow. Ezperimental data that support the results obtained are reported. 

In t roduc t ion .  Development of new technologies for fire extinguishing, neutralization of toxic vapors 
and fluids, and protective shielding is based on pulsed ejection and spraying of disperse working media. In 
this connection, it is desired to establish the regularities of the two-dimensional, axisymmetric, two-phase jet 
formed upon discharge of a pressurized gas with dispersed particles from a circular duct of finite dimensions 
into the atmosphere. 

The present paper continues our studies [1], in which ducted flows were treated within the model of 
a collision-free, two-phase, gas-disperse medium. A feature of gas-dispersion flow in the out-of-duct region is 
that the collision mechanism plays an important part in random particle motion. This is manifested primarily 
in radial expansion of the two-phase jet and is supported by the experimental data reported below and results 
of comparative calculations using t.he collision-free model and considering the effective pressure of the disperse 
phase. 

1. Formula t ion  of t he  P rob lem.  We consider a two-phase disperse mixture of particles and a carrier 
phase (gas). To simplify the mathematical description of the mixture, we adopt the following assumptions [2]: 
the particle sizes are larger than the molecular-kinetic dimensions and smaller than the distances at which 
the parameters of the mixture change appreciably; the mixture is monodisperse: there are no fragmentation, 
aggregation or formation of new particles taking place; the gas is calorically perfect, the viscosity and thermal 
conductivity are manifested only in interphase interaction processes; the energy of the small-scale motion of 
the carrier gas is low. 

From a statistical viewpoint, any disperse phase can be treated as a real gas. Conservation equations 
for a pseudogas of particles can be derived by the classical Enskog method applied to the Boltzmann equation 
[3], which corresponds to the Navier-Stokes approximation for a disperse phase. Buevich [3] points to the 
possibility of simplifying this system of equations of motion by ignoring quasiviscous stresses and pulsation 
energy flux (an analog of thermal conductivity in a gas). Then, the isotropic pressure of the pseudogas of 
particles should be taken into account in the equation of conservation of momentum, and the specific energy 
of particle pulsation motion and the work done by pressure forces to compress or expand the pseudogas should 
be taken into account in the equation of conservation of the total energy of the mixture. 
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Within the adopted concept,  the equations of spatial motion of the gas-disperse mixture with allowance 
for inertial phenomena in the flow around particles [2] can be writ ten as 

Opi 
-t- V �9 pivi  = O, 

Ot 

OplV1 
0----/--- + V .  plVl(Vl �9 1) +/31Vp + (1 - fl2)VPd = -fl3Ft~ +/33Plg + (1 - /32)(pl  + P2) g, 

002v2 + V -  p2v2(v2 �9 1) + (1 - flx)Vp + fl2Vpa =/3sFi,  - /33pxg +/~2(PX + P2) g, 
Ot 

Op2u2 Op2k2 
0---~ + V .  p2u2v2 = Q, 0 - ~  + v .  p2k2v2 + pd v .  v2 = q+ -- q- ,  (1.1) 

O (piE1 + p2E2) + [plElVl + p2E2v2 + p(a lVl  + a2v2) + pdv2] = P l g "  vl  + P2g" v2, V -  

0 (i 1 ,2 ) ,  E1 u l + 1 / 2 v ~ ,  E2 u 2 + k 2 + 1 / 2 v ~ ,  Pi = Pi ai = = -- 
0 0 a1(2 + XmPl/P2) 2 "t- XmO~2 2 

Z~ = 2 + x m ( ~  + oxp0/p0),  Z~ = 2 + xm(~2 + ~ lp~176  ' fi3 = 2 + x , , ( a2  + ~ ,p0/p0) .  

Here and below, the subscripts 1 and 2 refer to the parameters of the carrier and disperse phases, respectively, 
the superscript 0 refers to the true value of density, V is the Hamiltonian operator pivi(vi  �9 1) is the flux of 
vector m o m e n t u m  of the i th phase through the surface normal to unit  vector l, ai ,  pi, vi, Ei, and ui are the 
volumetric fraction, normalized density, vector velocity, and total and internal energies of a unit  mass of the 
i th phase, p is the gas pressure, Pa is the effective pressure due to random particle motion, k2 is the pulsation 
energy of a unit  mass of the disperse phase, g is the free-fall acceleration vector, Ft, and Q are the viscous 
component  of the interphase interaction force and the rate of heat exchange between the gas and the particles, 
q+ and q_ are the rates of energy supply and dissipation due to random particle motion in a unit  volume of 
the mixture,  Xm is a coefficient that  takes into account the  effect of the nonspherical shape and nonsingleness 
of the particles on the at tached-mass forces, (Xm = 1 for spherical particles), and t is time. 

The  system of quasilinear equations (1.1) is supplemented by the following equations of state for an 
ideal, calorically perfect gas and incompressible solid particles: 

P = (71 -- 1)p0Ul, Ul = cvT1, u2 = c2T2, 71,cv ,  c2, p 0 = const .  (1.2) 

Here T1 and T2 are the temperatures  of the carrier gas and the particles and 71, cv,  and c2 are the adiabatic 
exponent,  the specific heat of the gas with constant volume, and the specific heat of the particles. 

The  rates of interphase friction and heat transfer are specified by the following relations [2, 4, 5]: 

F~, = (318)(a2/r)C~,px w121w12h w12 = v l  - v 2 ,  

C(X) 24 4.4 
= ~ + ~ + 0.42, a2 ~< 0.08, 

tie12 Kel~ 

Ct, = C (2) 4 f l  75 150 a2 '~ 
30tl L " " ~ - ~ ) '  0~2 ) 0-45, 

[(a2 0.08)Cu (2) + (0.45 - a2)C~(1)1/0.37, 0.08 < ae < 0.45, (1.3) 

~ 1-, 1/3 
Q = ( 3 / 2 ) ( a 2 / r 2 ) A I N u l ( T 1 - T 2 ) ,  N u l =  2+0"106rte12rr1 ' 

a a ~o.67D-a/3 
2.27+ . . . . . .  12 -~1 , 

Rel2 = 2rp~ Prl = CyTl#l /A1.  

Here Re12, Nul,  and Prl  are the Reynolds, Nusselt, and Prandtl  numbers, Ct~ 

Rel2 ~ 200, 

Rel2 > 200, 

is the interphase-friction 

1:31 



coefficient, Pl is the dynamic  viscosity, A1 is the thermal  conductivi ty of the gas, and r is the particle radius. 
In the Enskog theory of dense gases [3], the equation of s tate for a pseudogas has the form 

Pd = ( 2 / 3 ) G ( a 2 ) p 2 k 2 ,  G(a2) = 1/(1 - (~2/er~)l/3), er~ = c o n s t ,  (1.4) 

where G(er2) is a correction function that  takes into account the increase in the number  of collisions in a dense 
gas compared to a diluted gas. 

To complete system (1.1), it is necessary to specify the laws of energy supply q+ to random particle 
motion and dissipation of pulsation energy q_ in a unit  volume per unit  time. The  dissipation is caused by 
inelastic collisions of particles [3] and the viscosity of the surrounding gas. Using linear approximations of 
relations (1.3), we obtain 

q -  - erck~/2 "t" er,  k2, ere --  4 ( 8 1 r / 2 7 ) l / 2 k c ( r p ~  - 1), 

{ a~ 1) = 9 e r l a 2 P l / r 2 ,  a2 ~ 0.08, 

= a( ,  2) = 75 [a(2)(a2 erl r 2 '  a2/> 0.45, 

- 0.08) + erO)(0.45 - er2)]/0.37, 0.08 < a2 < 0.45, 

where kc is a coefficient that  describes the mean fraction of the kinetic energy of colliding particles absorbed 
in a collision and m is the mass of a dispersed particle. 

It is known [2] that  the  annular eddy formed past a sphere in gas flow tha t  is steady at infinity 
oscillates at approximately Re > 130. As experimental  studies [5] showed, during mot ion of phases relative 
to one another  in a gas-disperse medium,  transition from one flow regime to another  takes place at about 
Rel2 = 200. As the Reynolds number  increases, the frequency of the oscillations rises. From the aforesaid, the 
rate of energy transfer from the relative mot ion of the phases to random particle mot ion can be wri t ten as 

nk+(Re12 - 200) ~, Re12/> 200, 
q+ = 0, Re12 < 200. 

Here k+ and w are empirical constants and n is the number  of dispersed particles in a unit  volume of the 
mixture.  

At the initial moment ,  the duct  contains a stat ionary mixture  of the pressurized gas and the dispersed 
particles, and outside the duct ,  there is unper turbed gas with parameters denoted by the subscripts h and a: 

P = Ph, 7"1 = T2 = Th, erl = Oelh, Vl = I)2 = O, 

P = P a ,  T1 = T2 = Ta, erl "~ 1, Vl "-- T)2 -~- O. 

Nonpenetrat ion conditions are specified for both phases at the walls and bot tom of the duct,  and the initial 
conditions are specified at infinity. 

After rupture  of the d iaphragm that  separates the gas-dispersion mixture from the atmosphere,  the 
discharge of the two-phase med ium to be calculated begins. The  problem was solved for the following initial 
parameters: Ph = 0.6 MPa, Pa = 0.1 MPa, Tih = T i n  -~ 293 K, alh = 0.4, e r l a  ~-- 1, 71 = 1.4, #1 - ' -  

1.8- 10 - S P a -  sec, ,kl = 0.025 W / ( m -  K), R1 = 287 Z / ( k g .  K), cv = 716 m2/(sec 2 �9 K), r = 100 /~m, 
p0 = 2600 k g / m  3, c2 = 710 m2/(sec 2 �9 K), kc = 0, k+ = 5- 10 - r  W, w = 1, and er~ = 0.7, where R1 is the gas 
constant.  The length and radius of the duct  were 0.6 and 0.05 m, respectively. 

2. C a l c u l a t i o n  P r o c e d u r e .  The  heterogeneous wave flows studied in this work are characterized by 
intense interphase interaction. As shown in [6], the method  whereby the quantities related to the friction and 
heat exchange between the gas and the particles are taken into account in the difference scheme can exert a 
significant influence on the stability and, hence, efficiency of the computat ional  algorithm. 

The numerical integration procedure described below is an extension of the algori thm of [6] to the 
equations of two-velocity, two-temperature,  gas-disperse flows with two pressures. For brevity of the derivation, 
here we describe this procedure for the plane one-dimensional case ignoring gravity. 

132 



The  initial system (1.1) is split into two stages with respect to the physical processes. In approximation 
of the resultant system of equations, the force interphase interaction is taken into account at the first stage, 
and heat transfer at the second. The velocity and total energy of the less inertial carrier phase enter in the 
source terms implicitly (ill,m, "-q,,n~k+lxJ, and their analogs for the particles (v~,m, E~,m) are allowed for in an 
explicit manner.  Here and below, the tilde denotes the parameters calculated at the first stage, the superscript 
denotes the time-layer number,  the first subscript 1 stands for the gas, 2 for a particle, and the second subscript 
refers to the mesh number.  Since the interphase interaction force (1.3) is a power-law function of (Vl - v2), in 
order to calculate the gas velocity at the first stage explicitly (without iterations), it makes sense to separate 
the linear part  of the expression film - v~,,n in F t .  

Stage 1. 

Pl k k uk  
= P l ,m ,  P2 = ~z2 = /72,m, 2,m 

k k 7" k k k 
-- -- Pro-l/2) 

r ( l  k k k k k ] /  k - -  - /3z,~)(Pa,~+l/2 - Pd,m-1/2) + ,O~,,,~Av2,,,~r (Pl,~ +/3~,mAr),  h 

~2,m U k [h(X k k k r /3k . k  k -- -- P d , m - l / 2 )  ---- 2,rn -- -- f l l , m ) ( P m + l / 2  Pro-l/2) q" ~ 2,m~Pd,m+l/2  

+/3k, mA(~l,m v k . r]  / k - 

7" k ~ v k  ~1  k 
k2,rn = kk, m -- pk ,m -~ (V2,m+l/2  2 , m - l / 2 ) / P 2 , m ,  

7" k k k k k 
EI,,~ = E ~ , .  - ~ [p~+ll2(al,m+ll2Vx,.+11z + a2,.+algV2,m+l/2) 

k k k otk ok  x l l  k - -Pm-1 /Z(aLm- lDvLm-1/2  + 2,m-V2 ~,m-1/~)l/Pl,rn, 

&,,. = + + 

Stage 2. 

:k+~ p~,. + (AMi,~_~I~ /XM~,~+ll~)/h, 
Dk+l -.  k - k+ l  

i,m = [V,,mPi,m + (AMvi ,m- l [2  -- AMvi ,m+l/2) /h] /Pi ,m , 

k k + l  ~ k k k+ l  
~,m = [u2,mP2,m + (AMfi2,m-ID - AMf i2 ,m+ID) /h  + Omr]/P2,m, 

~k+l  ~ k k k k+l  
= [k2,mP2,m + (AMk2,m-1 /2  AMk2 ,m+l /2 ) /h  + (q+,m - q- ,m)r]/P2,m, n,2, m 

Ek+1 , k + l  ~.k+l k+l 2 2,rn = ~2,rn + '~2,rn + (U2,rn) / 2 ,  

E k + l  = [~l,rnpk,rn + " k -- ( C  + / . k + l  , k + l , 2 , - ,  k+l  1,m ~2,mP2,m "~2,m "~- ~V2,rn ) [~)P2,rn 

" - k+l B r l c v ) ,  +( A M E I , m - 1 / x  + AME2,m-1 /2  - A M F ,  I,m+I/2 - AME2,m+I/X)]/ (pl ,  m + 

A k k _ v k k k T k = F ; , r n l ( V l , m  2,m), B -~ Q r n l ( T ; , m  - 2,m), 

.t73k x2 
k k \ 2 - ~ v  + k k+l ~"~ [u2,mP2,mq-(AM~2,ra-l,2-AM~z2,rnWI,2)/h-j~(~" l'm) T2,rn)7"]/P2,rn, 

where r and h are the mesh steps for t ime and space, respectively. The  pressures of the gas and the pseudogas of 
particles are determined from the equations of state (1.2) and (1.4). The  quantit ies with fractional subscripts 
related to the mesh boundaries are equal to half the sum of the corresponding parameters in neighboring 
meshes, e.g., k /c Pro+l~2 = (Pm+l + p~) /2 .  The rates of transfer of mass, momentum,  and energy through the 

1:3:3 



mesh boundaries are determined with allowance for the direction of the flow: 

( Pkm~i,mVi,m+l/2r, Vm+l/2 ~ 0, {I',vl,v2, E1,E2,u2, k2). 
AMQi'm+l/2 = Pi,m+l~i,m+lfJi,m+l/2 r, vm+l/2 < O, ~ = 

To damp oscillations in regions with low (zero) velocity of the carrier phase, it is advantageous to introduce 
an additional pseudoviscous pressure similar to the one used in [7]. 

In the general case, the allowable time step of the numerical algorithm depends on a number of factors 
(initial conditions, rates of interphase friction and heat exchange) [6] and is given by the following condition 
of the Courant-Friedrichs-Ldvy type: 

max ([vt, m[ + akl,m)r ak (71pkm ~ I/2 
Cr = m h = const < 1, 1,m = _-b'i'- 

k PI,,,, ] 

Numerical experiments showed that use of the above difference scheme to solve the problem of interest increases 
the admissible time step severalfold compared to the algorithm of [7]. 

3. Some Resul t s .  As in [1], results of solving the formulated problem are presented in dimensionless 
form. The phase velocities are normalized to the velocity of sound in the gas-disperse mixture in an equilibrium 
(for the velocities and temperatures) approximation ah = (TPh/((Plh + P2h)/Ot2h)) 1/2, "7 = (C + r l R 1 ) / c  , 

C = rlcv1 q- r2c2, and ri = Pi/P (i = 1, 2), the gas pressure to the initial pressure of the unperturbed 
atmosphere Pa, and the linear dimensions to the duct length L. As the time scale, we use the ratio L/ah, 
which is related to the time required for a rarefaction wave to pass from the duct exit to its bottom. 

Figures 1-3 show profiles of the axial projections of the gas and particle velocities, the gas pressure, and 
the volume concentration of the disperse phase (curves 1--4) onto the symmetry axis for various characteristic 
times and Sr -1 = aht/L = 1.03, 4.13, and 7.23 (a). The same figures illustrate the atmospheric section of the 
gas-disperse jet (b). 

After decay of the initial discontinuity and dynamic relaxation, a quasicritical two-phase jet flow 
develops that has the following characteristic structure. A rarefaction wave propagates from the duct exit to 
its bottom, and the gas-disperse mixture flows in the opposite direction. The axial-velocity components of 
the two phases differ from one another and attain the highest values at the duct exit (Fig. la). Near the exit, 
there is a region of increased pressure of the gas and the pseudogas of particles, and the velocity vectors of 
the phases are directed from the symmetry axis, which results in formation of a concentration field of the 
disperse phase (Fig. lb). The duration of this stage can be evaluated as the time required for passage of the 
rarefaction wave from the duct exit to the duct bottom and return of the reflected wave. 

For Sr -1 > (1.5-2), transition from one discharge regime to another takes place. The transition exhibits 
the following regularities. The maximum of the axial velocity of the disperse phase and then that of the gas 
are displaced upstream from the duct exit. The gas pressure in the duct falls below the initial pressure of the 
unperturbed atmosphere, thus causing deceleration of the particles and appearance of a reverse gas flow in 
the duct (Fig. 2a). The region of increased effective pressure of the pseudogas is displaced downstream. The 
highest value of the pressure decreases owing to dissipation of the energy of random motion of the dispersed 
particle. The gas-disperse jet acquires a conical shape with its narrow part at the duct exit (Fig. 2b). 

At the final stage (Sr -1 > 8), the ducted flow practically ceases (Fig. 3a) and the atmospheric region 
of the flow has two characteristic parts. In the tail part of the jet, a "leg" forms, with a transverse dimension 
close to the duct diameter (Fig. 3b). The head part of the jet has a radially diverging oval shape, for which 
the axial slippage of the phases is significant. Throughout the flow region of the gas-disperse mixture, the 
gas pressure differs from the initial pressure of the unperturbed atmosphere by not more than 1% and the 
effective pressure of the pseudogas of particles is low. 

Calculations using the collision-free model of [1] were conducted and experiments were performed. A 
duct in an upright position was filled with quartz sand, separated from the ambient medium with a diaphragm, 
and pumped up with air. The air pressure in the duct was measured by a calibrated manometer. The unsteady 
discharge of the gas-disperse mixture was recorded by a "Krasnoyarsk" cine camera. The dimensions of the 
duct and the parameters of the phases were the same as the initial data given above. 
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Results of calculations using the collision-free model are shown in Fig. 3b by curve 2, which corresponds 
to 0.1% of the initial concentration of the disperse phase. Comparison with the data obtained suggests that the 
collision mechanism has a significant influence on the radial expansion of the gas-disperse mixture. The visible 
contour of the jet observed in the experiment is shown by the solid curve in Figs. lb and 2b and by curve 1 in 
Fig. 3b. Comparison between the calculated and experimental data indicates that the adopted mathematical 
model is adequate to the phenomenon studied. Further development of the model requires allowance for the 
turbulence of the carrier gas. 
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